Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.304
Filtrar
1.
Mar Drugs ; 22(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38667777

RESUMO

Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of nanofiber and porous structure in physiological environments. A novel post-electrospinning method using di-tert-butyl dicarbonate (tBOC) prevents swelling and loss of nanofibrous structure better than sodium carbonate treatments. This study aimed to evaluate the hypothesis that retention of nanofiber morphology and high porosity of tBOC-modified ESCM (tBOC-ESCM) would support more bone mineralization in osteoblast-fibroblast co-cultures compared to Na2CO3 treated membranes (Na2CO3-ESCM) and solution-cast chitosan solid films (CM-film). The results showed that only the tBOC-ESCM retained the nanofibrous structure and had approximately 14 times more pore volume than Na2CO3-ESCM and thousands of times more pore volume than CM-films, respectively. In co-cultures, the tBOC-ESCM resulted in a significantly greater calcium-phosphate deposition by osteoblasts than either the Na2CO3-ESCM or CM-film (p < 0.05). This work supports the study hypothesis that tBOC-ESCM with nanofiber structure and high porosity promotes the exchange of signals between osteoblasts and fibroblasts, leading to improved mineralization in vitro and thus potentially improved bone healing and regeneration in guided bone regeneration applications.


Assuntos
Fosfatos de Cálcio , Quitosana , Técnicas de Cocultura , Fibroblastos , Nanofibras , Osteoblastos , Osteoblastos/efeitos dos fármacos , Quitosana/química , Fibroblastos/efeitos dos fármacos , Porosidade , Nanofibras/química , Fosfatos de Cálcio/química , Animais , Regeneração Óssea/efeitos dos fármacos , Camundongos , Tecidos Suporte/química , Carbonatos/química , Calcificação Fisiológica/efeitos dos fármacos
2.
Mar Environ Res ; 197: 106471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574496

RESUMO

Eolian dust and riverine discharge are identified as two key components of terrestrial input to the oceans. They supply micronutrients to the oceans and modify marine carbon biogeochemistry and global climate through dust-land-ocean interactions. However, it is challenging to accurately constrain regional terrestrial inputs in the past, with currently available models and geochemical proxies. The present study utilizes sedimentary wtCaCO3% records to estimate lithogenic fluxes. The depth-dependance of CaCO3 preservation in the Holocene and Last Glacial Maximum (LGM) sediments in two major basins of the tropical Northeast Atlantic Ocean is described using a carbonate dissolution model. Results show that during the LGM, reduced dust deposition and slight drops of fluvial input are found in the Canary Basin and Cape Verde margins, respectively. To supplement, carbonate deposition during the LGM indicates that the deep subtropical Northeast Atlantic is seized by more sluggish deep waters relative to today.


Assuntos
Carbonatos , Clima , Oceanos e Mares , Oceano Atlântico , Poeira/análise
3.
J Hum Evol ; 190: 103498, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581918

RESUMO

The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3-2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition.


Assuntos
Hominidae , Animais , Quênia , Ecossistema , Evolução Biológica , Carbonatos , Arqueologia , Fósseis
4.
J Hazard Mater ; 470: 134286, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615649

RESUMO

Microplastic hetero-aggregates are stable forms of microplastics in the aqueous environment. However, when disinfecting water containing microplastic hetero-aggregates, the response of them in water to different oxidizing agents and the effect on water quality have not been reported. Our results showed that Ca(ClO)2, K2S2O8, and sodium percarbonate (SPC) treatment could lead to the disaggregation of microplastic hetero-aggregates as well as a rise in cell membrane permeability, which caused a large amount of organic matter to be released. When the amount of oxidant dosing is insufficient, the oxidant cannot completely degrade the released organic matter, resulting in DOC, DTN, DTP and other indicators being higher than before oxidation, thus causing secondary pollution of the water body. In comparison, K2FeO4 can purify the water body stably without destroying the microplastic hetero-aggregates, but it only weakly inhibits the toxic cyanobacteria Microcystis and Pseudanabaena, which may cause cyanobacterial bloom as well as algal toxin and odorant contamination in practical application. Compared with the other oxidizers, K2S2O8 provides better inhibition of toxic cyanobacteria and has better ecological safety. Therefore, when treating microplastic-containing water bodies, we should consider both water purification and ecological safety, and select appropriate oxidant types and dosages to optimize the water treatment.


Assuntos
Microplásticos , Oxidantes , Poluentes Químicos da Água , Oxidantes/química , Microplásticos/toxicidade , Microplásticos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Carbonatos/química , Purificação da Água/métodos
5.
J Hazard Mater ; 470: 134210, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581876

RESUMO

Modern metallurgical and smelting activities discharge the lead-containing wastewater, causing serious threats to human health. Bacteria and urease applied to microbial-induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) are denatured under high Pb2+ concentration. The nano-hydroxyapatite (nHAP)-assisted biomineralization technology was applied in this study for Pb immobilization. Results showed that the extracellular polymers and cell membranes failed to secure the urease activity when subjected to 60 mM Pb2+. The immobilization efficiency dropped to below 50% under MICP, whereas it due to a lack of extracellular polymers and cell membranes dropped to below 30% under EICP. nHAP prevented the attachment of Pb2+ either through competing with bacteria and urease or promoting Ca2+/Pb2+ ion exchange. Furthermore, CO32- from ureolysis replaced the hydroxyl (-OH) in hydroxylpyromorphite to encourage the formation of carbonate-bearing hydroxylpyromorphite of higher stability (Pb10(PO4)6CO3). Moreover, nHAP application overcame an inability to provide nucleation sites by urease. As a result, the immobilization efficiency, when subjected to 60 mM Pb2+, elevated to above 80% under MICP-nHAP and to some 70% under EICP-nHAP. The findings highlight the potential of applying the nHAP-assisted biomineralization technology to Pb-containing water bodies remediation.


Assuntos
Biomineralização , Durapatita , Chumbo , Urease , Poluentes Químicos da Água , Durapatita/química , Chumbo/química , Urease/metabolismo , Urease/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Carbonatos/química , Recuperação e Remediação Ambiental/métodos
6.
Sci Total Environ ; 927: 172268, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583629

RESUMO

Due to the inappropriate disposal of waste materials containing lead (Pb) and irrigation with sewage containing Pb, the migration of Pb2+ within the soil profile has been extensively investigated. The conventional Pb2+ block method is challenging to implement due to its complex operational procedures and high construction costs. To address this issue, this study introduces the microbial-induced carbonate precipitation (MICP) technique as a novel approach to impede the migration of Pb2+ in the soil profile. Soil acclimatization with urea resulted in an increased proportion of urease-producing microorganisms, including Bacillus, Paenibacillus, and Planococcaceae, along with heightened expression of urea-hydrolyzing genes (UreA, UreB, UreC, and UreG). This indicates that urea-acclimatized soil (Soil-MICP) possesses the potential to induce carbonate precipitation. Batch Pb2+ fixation experiments confirmed that the fixation efficiency of Soil-MICP on Pb2+ exceeded that of soil without MICP, attributed to the MICP process within the Soil-MICP group. Dynamic migration experiments revealed that the MICP reaction transformed exchangeable lead into carbonate-bound Pb, effectively impeding Pb2+ migration in the soil profile. Additionally, the migration rate of Pb2+ in Soil-MICP was influenced by varying urea amounts, pH levels, and pore flow rates, leading to a slowdown in migration. The Two-site sorption model aptly described the Pb2+ migration process in the Soil-MICP column. This study aims to elucidate the MICP biomineralization process, uncover the in-situ blocking mechanism of MICP on lead in soil, investigate the impact of Pb on key genes involved in urease metabolism, enhance the comprehension of the chemical morphology of lead mineralization products, and provide a theoretical foundation for MICP technology in preventing the migration of Pb2+ in soil profiles.


Assuntos
Carbonatos , Chumbo , Microbiologia do Solo , Poluentes do Solo , Solo , Solo/química , Urease/metabolismo , Precipitação Química
7.
Geobiology ; 22(2): e12595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596869

RESUMO

On the anoxic Archean Earth, prior to the onset of oxidative weathering, electron acceptors were relatively scarce, perhaps limiting microbial productivity. An important metabolite may have been sulfate produced during the photolysis of volcanogenic SO2 gas. Multiple sulfur isotope data can be used to track this sulfur source, and indeed this record indicates SO2 photolysis dating back to at least 3.7 Ga, that is, as far back as proposed evidence of life on Earth. However, measurements of multiple sulfur isotopes in some key strata from that time can be challenging due to low sulfur concentrations. Some studies have overcome this challenge with NanoSIMS or optimized gas-source mass spectrometry techniques, but those instruments are not readily accessible. Here, we applied an aqua regia leaching protocol to extract small amounts of sulfur from whole rocks for analyses of multiple sulfur isotopes by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Measurements of standards and replicates demonstrate good precision and accuracy. We applied this technique to meta-sedimentary rocks with putative biosignatures from the Eoarchean Isua Supracrustal Belt (ISB, >3.7 Ga) and found positive ∆33S (1.40-1.80‰) in four meta-turbidites and negative ∆33S (-0.80‰ and -0.66‰) in two meta-carbonates. Two meta-basalts do not display significant mass-independent fractionation (MIF, -0.01‰ and 0.16‰). In situ Re-Os dating on a molybdenite vein hosted in the meta-turbidites identifies an early ca. 3.7 Ga hydrothermal phase, and in situ Rb-Sr dating of micas in the meta-carbonates suggests metamorphism affected the rocks at ca. 2.2 and 1.7 Ga. We discuss alteration mechanisms and conclude that there is most likely a primary MIF-bearing phase in these meta-sediments. Our new method is therefore a useful addition to the geochemical toolbox, and it confirms that organisms at that time, if present, may indeed have been fed by volcanic nutrients.


Assuntos
Carbonatos , Isótopos de Enxofre/análise
8.
Geobiology ; 22(2): e12596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591761

RESUMO

The formation of intracellular amorphous calcium carbonate (ACC) by various cyanobacteria is a widespread biomineralization process, yet its mechanism and importance in past and modern environments remain to be fully comprehended. This study explores whether calcium (Ca) isotope fractionation, linked to ACC-forming cyanobacteria, can serve as a reliable tracer for detecting these microorganisms in modern and ancient settings. Accordingly, we measured stable Ca isotope fractionation during Ca uptake by the intracellular ACC-forming cyanobacterium Cyanothece sp. PCC 7425. Our results show that Cyanothece sp. PCC 7425 cells are enriched in lighter Ca isotopes relative to the solution. This finding is consistent with the kinetic isotope effects observed in the Ca isotope fractionation during biogenic carbonate formation by marine calcifying organisms. The Ca isotope composition of Cyanothece sp. PCC 7425 was accurately modeled using a Rayleigh fractionation model, resulting in a Ca isotope fractionation factor (Δ44Ca) equal to -0.72 ± 0.05‰. Numerical modeling suggests that Ca uptake by these cyanobacteria is primarily unidirectional, with minimal back reaction observed over the duration of the experiment. Finally, we compared our Δ44Ca values with those of other biotic and abiotic carbonates, revealing similarities with organisms that form biogenic calcite. These similarities raise questions about the effectiveness of using the Ca isotope fractionation factor as a univocal tracer of ACC-forming cyanobacteria in the environment. We propose that the use of Δ44Ca in combination with other proposed tracers of ACC-forming cyanobacteria such as Ba and Sr isotope fractionation factors and/or elevated Ba/Ca and Sr/Ca ratios may provide a more reliable approach.


Assuntos
Cianobactérias , Cyanothece , Carbonato de Cálcio , Carbonatos , Isótopos de Cálcio , Isótopos/análise , Organismos Aquáticos , Cálcio
9.
Geobiology ; 22(2): e12590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468508

RESUMO

Nubecularia bioherms represent unique bioconstructions that are restricted to the upper Serravallian of the Paratethys and have been reported since the 19th century. They occur in the Central Paratethys in the late Sarmatian and the Eastern Paratethys in the Bessarabian both regional stages of the respective Paratethyan areas. In this study, several locations in the Vienna and Styrian basins of the Central Paratethys were studied out of which four localities were documented in detail (Wolfsthal, Maustrenk, St. Margarethen-Zollhaus, Vienna-Ruzickagasse) to reconstruct their sedimentary setting, their internal composition, and their indications of environmental parameters. The detailed studies included logging of outcrop sections, petrographic, facies and biotic analyses of polished slabs and thin sections and also cathodoluminescence analyses. These concluded that these bioconstructions are not only composed of the foraminifer Nubecularia but represent a complex mixture and interrelationships of Nubecularia, serpulids and microbial carbonate. Four boundstone types can be differentiated: Nubecularia boundstone, Nubecularia-coralline algal boundstone, stromatolitic/thrombolitic boundstone and serpulid-nubeculariid-microbial boundstone. The first 3 types are characteristic of specific localities; the fourth type occurs in all studied locations and represents the terminal association on top of the three other types. The three basal boundstones are predominantly of columnar growth form irrespective of dominance of Nubecularia, coralline algae or microbial carbonate, and the terminal boundstone is widely irregularly organized. The general depositional environment is characterized by cross-bedded oolitic grainstones with abundant quartz grains, miliolid foraminifers and mollusks. Intercalated are microbial carbonates mostly stromatolites but also thrombolites. This indicates a general high water energy environment interrupted by more calm periods when the microbial carbonate was built. The 3 basal types of bioconstructions are interpreted to reflect decreasing food supply and/or oxygenation from Nubecularia over Nubecularia-coralline algal to stromatolitic/thrombolitic boundstone. The serpulid-nubeculariid-microbial boundstone reflects an internal succession with a decrease of the same parameters. Water depth is considered very shallow ranging from 0 to a few meters, and salinity was normal marine to hypersaline. The reconstructed paleoenvironment with dominating oolite shoals and seagrass meadows was not restricted to the Central Paratethys but extended over the entire Paratethys and represented the largest oolite facies area of the entire Cenozoic!


Assuntos
Carbonatos , Plantas , Facies , Água
10.
Molecules ; 29(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474637

RESUMO

Based on the reported research, hydroxyl radicals can be rapidly transformed into carbonate radicals in the carbonate-bicarbonate buffering system in vivo. Many of the processes considered to be initiated by hydroxyl radicals may be caused by carbonate radicals, which indicates that lipid peroxidation initiated by hydroxyl radicals can also be caused by carbonate radicals. To date, theoretical research on reactions of hydrogen abstraction from and radical addition to polyunsaturated fatty acids (PUFAs) of carbonate radicals has not been carried out systematically. This paper employs (3Z,6Z)-nona-3,6-diene (NDE) as a model for polyunsaturated fatty acids (PUFAs). Density functional theory (DFT) with the CAM-B3LYP method at the 6-311+g(d,p) level was used to calculate the differences in reactivity of carbonate radicals abstracting hydrogen from different positions of NDE and their addition to the double bonds of NDE under lipid solvent conditions with a dielectric constant of 4.0 (CPCM model). Grimme's empirical dispersion correction was taken into account through the D3 scheme. The energy barrier, reaction rate constants, internal energy, enthalpy and Gibbs free energy changes in these reactions were calculated With zero-point vibrational energy (ZPVE) corrections. The results indicated that carbonate radicals initiate lipid peroxidation primarily through hydrogen abstraction from diallyl carbon atoms. The reaction of hydrogen abstraction from diallyl carbon atoms exhibits the highest reaction rate, with a reaction rate constant approximately 43-fold greater than the second-ranked hydrogen abstraction from allyl carbon atoms. This process has the lowest energy barrier, internal energy, enthalpy, and Gibbs free energy changes, indicating that it is also the most spontaneous process.


Assuntos
Ácidos Graxos Insaturados , Hidrogênio , Peroxidação de Lipídeos , Hidrogênio/química , Ácidos Graxos Insaturados/química , Carbonatos , Radical Hidroxila/química , Carbono , Radicais Livres/química
11.
Waste Manag ; 178: 331-338, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430747

RESUMO

The combination of microbial electrolytic cells and anaerobic digestion (MEC-AD) became an efficient method to improve CO2 capture for waste sludge treatment. By adding CaCl2 and wollastonite, the CO2 sequestration effect with mineral carbonation under 0 V and 0.8 V was studied. The results showed that applied voltage could increase dissolved chemical oxygen demand (SCOD) degradation efficiency and biogas yield effectively. In addition, wollastonite and CaCl2 exhibited different CO2 sequestration performances due to different Ca2+ release characteristics. Wollastonite appeared to have a better CO2 sequestration effect and provided a wide margin of pH change, but CaCl2 released Ca2+ directly and decreased the pH of the MEC-AD system. The results showed methane yield reached 137.31 and 163.50 mL/g SCOD degraded and CO2 content of biogas is only 12.40 % and 2.22 % under 0.8 V with CaCl2 and wollastonite addition, respectively. Finally, the contribution of chemical CO2 sequestration by mineral carbonation and biological CO2 sequestration by hydrogenotrophic methanogenesis was clarified with CaCl2 addition. The chemical and biological CO2 sequestration percentages were 46.79 % and 53.21 % under 0.8 V, respectively. With the increased applied voltage, the contribution of chemical CO2 sequestration rose accordingly. The findings in this study are of great significance for further comprehending the mechanism of calcium addition on CO2 sequestration in the MEC-AD system and providing guidance for the later engineering application.


Assuntos
Compostos de Cálcio , Dióxido de Carbono , Esgotos , Silicatos , Dióxido de Carbono/química , Anaerobiose , Biocombustíveis , Cloreto de Cálcio , Minerais , Carbonatos , Metano , Reatores Biológicos
12.
Environ Pollut ; 348: 123880, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554835

RESUMO

The study aimed to evaluate the potential of a novel isolated ureolytic Enterobacter hormaechei IITISM-SA3 in cadmium bioremoval through MICP. The optimization and modelling of the biotic and abiotic factors affecting the process of mineralization were also performed. In addition, the underlying mechanism of MICP-driven Cd mineralization under microbial-inclusive and cell-free conditions was revealed and supported through the characterization of the bio-precipitates obtained using various characterization techniques. The results indicated that the isolate could remove 97.18% Cd2+ of 11.4 ppm under optimized conditions of 36.86 h, pH 7.63, and biomass dose of 1.75 ml. Besides, the presence and absence of bacterial cells were found to influence both the morphologies and crystalline structures of precipitates. The precipitates obtained under microbial-inclusive conditions showed typical rhombohedral crystalline structures of the composition comprising CaCO3, CdCO3, and 0.67Ca0.33CdCO3. However, the crystalline nature of the precipitate reduced to a nano-sized granular structure in cell-free media. Unlike the cadmium mineralization process under microbial-inclusive media, where bacterial cells serve as nucleation sites for crystallization, the carbonate precipitation effectively captures Cd2+ through co-precipitation, chemisorption, or alternative mechanisms involving interactions between metal ions and CaCO3 under cell-free conditions. The findings presented suggest that using cell-free culture supernatant enriched with carbonate ions provides an avenue that could be harnessed for sustainable metal remediation.


Assuntos
Cádmio , Carbonato de Cálcio , Enterobacter , Carbonato de Cálcio/química , Cádmio/química , Precipitação Química , Carbonatos/química
13.
Mar Pollut Bull ; 201: 116262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513602

RESUMO

This study investigated the carbonate system and air-sea CO2 exchange in the inshore waters along South Korea's western coastline in 2020. Overlooking these waters might introduce significant errors in estimating air-sea CO2 fluxes of the southeastern Yellow Sea, given their interaction with land, offshore regions, and sediments. During periods other than summer, seasonal variations in seawater CO2 partial pressure (pCO2) could be generally explained by thermal effects. Tidal mixing and shallow depths resulted in weaker stratification-induced carbon export compared to offshore regions. However, during summer, inshore waters exhibited high spatial variability in pCO2, ranging from approximately 185 to 1000 µatm. In contrast to offshore waters that modestly absorbed CO2, inshore waters shallower than 20 m emitted ∼100 Gg C yr-1 to the atmosphere. However, considering the high heterogeneity of the study area, additional observations with high spatial and temporal resolution are required to refine estimates of air-sea CO2 exchange.


Assuntos
Dióxido de Carbono , Água do Mar , Carbono , Carbonatos , Atmosfera
14.
J Environ Manage ; 356: 120596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520858

RESUMO

Dyes pose great threats to the aquatic environment and human health. Fe0-based Fenton-like systems have been widely employed for the degradation of organic dyes. However, the regulation of degradability and recyclability was still unclear. In this study, Rhodamine B (RhB) was served as the model pollutant, hydroxylamine hydrochloride was selected as the RA, the natural photocatalysis system demonstrated stable operation. RA, as performance enhancement agent, was firstly reported in micro/nano-Zero-Valent Iron@Biochar (m/nZVI@BC) based SPC-RA system. Carrier size-fractionated m/nZVI@BC was fabricated by one-step carbothermal method. As a result, RA synergistically interacted with SPC, and the reaction time reduced from 15 min to 4 min. In the 0.010 g m/nZVI@BC-mediated SPC-RA system, over 95% of RhB (100 mg·L-1, 1041.667 mg·g-1) was successfully degraded. The maximum degradation ability could still exceed 1g·g-1 via 5 times repeated applications. Meanwhile, the loss of degradability, caused by halving SPC concentration could be compensated by RA dosage measurement. The entire degradation process was predominantly dominated by free radicals (•OH> 1O2> •O2-> •CO3-). Reactive oxidizing species (ROSs) were primarily excited by α-Fe0, Fe3C and N sites of biochar (BC). Light and BC carrier dedicated slight influence. These discoveries shed a light on the activity and recyclability regulation of catalytic material, aligning with the principles of green chemistry and cleaner production. This study demonstrates a novel approach to efficient management of solid waste disposal, reuse of waste biomass, advanced treatment of dye-containing wastewater, pollution control in aquatic environments.


Assuntos
Carbonatos , Substâncias Redutoras , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Carvão Vegetal , Corantes , Concentração de Íons de Hidrogênio
15.
Plant Physiol Biochem ; 209: 108530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520966

RESUMO

Marine microalgae are an essential component of marine plankton and critical primary producers, playing a vital role in marine ecosystems. The seawater carbonate system is a dynamic equilibrium system, and changes in any component can alter the carbonate balance. In CO2-concentrating mechanisms (CCMs), carbonic anhydrase (CA) regulates CO2 concentration by catalyzing the interconversion between CO2 and HCO3-. Therefore, limiting the activity of extracellular carbonic anhydrase (exCA) alters the rate at which carbonate equilibrium is reached and further affects the carbon assimilation process in microalgae. In this study, two different microalgae, Phaeodactylum tricornutum and Nannochloropsis oceanica, were selected to investigate the effects of changes in the carbonate system on photosynthetic carbon assimilation in microalgae by inhibiting exCA activity with acetazolamide (AZ). Inhibition of exCA activity reduces specific growth rates and photosynthetic efficiency of microalgae. The total alkalinity, HCO3- concentration, and CO2 concentration of the cultures increased with the decrease of pH, but the changes of the ribulose 1,5- bisphosphate carboxylase/oxygenase (Rubisco) activities of the two microalgae were different. In addition, the two microalgae possessed different lipid and carbohydrate synthesis strategies, but both restricted triacylglycerol (TAG) synthesis. Meanwhile, the microalgal cells had to utilize more 13CO2 when HCO3- and CO2 conversion rates were limited and restricted. This led to the continuous accumulation of 13C in fatty acids and the elevation of δ13CFAs. In conclusion, our study provides a new perspective on the role of microalgae in correlating carbonate changes with photosynthetic carbon assimilation strategies under mechanistic constraints on inorganic carbon utilization.


Assuntos
Anidrases Carbônicas , Microalgas , Carbono , Isótopos de Carbono , Dióxido de Carbono , Ecossistema , Anidrases Carbônicas/metabolismo , Carbonatos , Fotossíntese/fisiologia
16.
Environ Monit Assess ; 196(4): 398, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530475

RESUMO

The current study was conducted within the context of the Holocene era in Sebkha El-Guettiate, located in southeastern Tunisia. The aim was to determine the factors influencing the geochemical and mineralogical composition of sediments and to elucidate the sedimentary characteristics of the Holocene within the Sebkha core. We examined a sediment core extending 100 cm from this Sebkha, subjecting it to comprehensive analysis to uncover its sedimentological, mineralogical, and geochemical properties. Several techniques were employed to strengthen and validate the connections between geochemical and mineralogical analyses, including X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and infrared (IR) spectroscopy, among others. Furthermore, statistical analyses utilizing principal component analysis (PCA) were applied to the results of the geochemical and mineralogical studies, aiding in the identification of patterns and relationships. A comprehensive mineralogical assessment of the core's sediments revealed the presence and interpretation of carbonate minerals, evaporite minerals, and detrital minerals. Through the application of infrared (IR) spectrometer techniques to all sediment samples, we gained insight into the mineralogical components and the distribution of key elements such as quartz, kaolinite, calcite, feldspar, and organic carbon. The geochemical composition demonstrated a clear dominance of silica (SiO2), accompanied by fluctuations in carbonate percentages (CaCO3). The prominent major elements, primarily magnesium (Mg) and calcium (Ca) originating from dolomitization, sodium (Na) and chlorine (Cl) from halite, and calcium (Ca) from gypsum, exhibited varying levels. Results from Rock-Eval 6 pyrolysis indicated that the organic matter within the sediments is generally a mixture of terrestrial and aquatic origins. This study provides practical information that underscores the diverse origins contributing to Sebkha sediment formation, often influenced by saline systems.


Assuntos
Cálcio , Dióxido de Silício , Cálcio/análise , Dióxido de Silício/análise , Tunísia , Monitoramento Ambiental , Minerais/análise , Carbonato de Cálcio/análise , Carbonatos/análise
17.
J Environ Manage ; 356: 120714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537463

RESUMO

The assembly process of Organic Matter (OM) from single molecules to polymers and the formation process of Ca-CO3 ion-pairs are explored at the micro-scale, and then the relationship between OM and carbonate based on the results of microbially-induced carbonate precipitation (MICP) laboratory experiments is established at the macro-scale. Molecular dynamics (MD) is used to model the assembly of OM (a) in an aqueous solution, (b) on surfaces of calcite (10 1‾ 4) crystals and (c) on defective calcite (101‾ 4) crystal surfaces. From the MICP experiments, carbonate minerals containing abundant OM were precipitated and were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The results of the MD show that OM is assembled into polymers in all three simulation systems. Although the Ca-CO3 ion-pairs and OM were briefly combined, the aggregation assembly of OM molecules and the precipitation of carbonate calcium are not related in the long run. The highly specific surface area of the defective calcite shows an increase in the adsorption of OM. The van der Waals forces, which are primarily responsible for controlling the assembly of OM molecules, increase with the degree of aggregation. According to the MICP experiments, OM is enriched on the mineral surfaces, and more OM is found at the steps of defective crystals with their larger surface areas. Through MD and MICP laboratory experiments, this work systematically describes the interaction of OM and carbonate minerals from the micro to the macro scales, and this provides insight into the interaction between OM and carbonates and biogeochemical processes related to the accumulation of OM in sediments.


Assuntos
Carbonato de Cálcio , Carbonatos , Carbonatos/química , Carbonato de Cálcio/química , Minerais , Adsorção , Polímeros , Precipitação Química
18.
Water Res ; 254: 121440, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479170

RESUMO

The ultraviolet/monochloramine (UV/NH2Cl) process is an emerging advanced oxidation process with promising prospects in water treatment. Previous studies developed kinetic models of UV/NH2Cl for simulating radical concentrations and pollutant degradation. However, the reaction rate constants of Cl2•- with bicarbonate and carbonate (kCl2•-, HCO3- and kCl2•-, CO32-) were overestimated in literature. Consequently, when dosing 1 mM chloride and 1 mM bicarbonate, the current models of UV/NH2Cl severely under-predicted the experimental concentrations of three important radicals (i.e., hydroxyl radical (HO•), chlorine radical (Cl•), and dichloride radical (Cl2•-)) with great deviations (> 90 %). To investigate this issue, the transformation reactions among these three radicals in UV/NH2Cl were systematically studied. For the first time, it was found that in addition to Cl•, Cl2•- was also an important parent radical of HO• in the presence of chloride, and chloride could effectively compensate the inhibitory effect of bicarbonate on HO• generation in the system. Moreover, reactions and rate constants in current models were scrutinized from corresponding literature, and the reaction rate constants of Cl2•- with bicarbonate and carbonate (kCl2•-, HCO3- and kCl2•-, CO32-) were reevaluated to be 1.47 × 105 and 3.78 × 106 M-1s-1, respectively, by laser flash photolysis. With the newly obtained rate constants, the refined model could accurately simulate concentrations of all three radicals under different chloride and bicarbonate dosages with satisfactory deviations (< 30 %). Meanwhile, the refined model performed much better in predicting pollutant degradation and radical contribution compared with the unrefined model (with the previously estimated kCl2•-, HCO3- and kCl2•-, CO32-). The results of this study enhanced the accuracy and applicability of the kinetic model of UV/NH2Cl, and deepened the understanding of radical transformation in the process.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bicarbonatos , Cloretos , Raios Ultravioleta , Poluentes Químicos da Água/análise , Cloro , Carbonatos , Cinética , Oxirredução
19.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542829

RESUMO

This study was undertaken to investigate the effects of hydrothermal treatments under mild acid and alkaline conditions on polyphenol release and recovery from wheat bran (WB). After an initial screening of various food-grade substances, strong evidence was raised regarding the potency of citric acid and sodium carbonate to provide WB extracts exceptionally enriched in polyphenols. Thus, these two catalysts were tested under various time and temperature combinations, and the processes were described by linear models based on severity factor. The most effective treatments were those performed with 10% of either citric acid or sodium carbonate, at a constant temperature of 90 °C for 24 h, providing yields in total polyphenols of 23.76 and 23.60 mg g-1 dry mass of ferulic acid equivalents, respectively. Liquid chromatography-mass spectrometry analyses revealed that, while the sodium carbonate treatment afforded extracts enriched in ferulic acid, treatments with citric acid gave extracts enriched in a ferulate pentose ester. The extracts produced from those treatments also exhibited diversified antioxidant characteristics, a fact ascribed to the different polyphenolic composition. To the best of the authors' knowledge, this is the first report demonstrating the effective release of ferulic acid and a ferulate pentose ester from WB, using benign acid and alkali catalysts, such as citric acid and sodium carbonate.


Assuntos
Antioxidantes , Carbonatos , Ácidos Cumáricos , Polifenóis , Antioxidantes/química , Polifenóis/análise , Fibras na Dieta/análise , Pentoses , Ésteres , Ácido Cítrico
20.
Environ Sci Pollut Res Int ; 31(17): 26261-26281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499921

RESUMO

Nutrient imbalances may negatively affect the health status of forests exposed to multiple stress factors, including drought and bark beetle calamities. We studied the origin of base cations in runoff from a small Carpathian catchment underlain by base-poor flysch turbidites using magnesium (Mg), calcium (Ca) and strontium (Sr) isotope composition of 10 ecosystem compartments. Our objective was to constrain conclusions drawn from long-term hydrochemical monitoring of inputs and outputs. Annual export of Mg, Ca and Sr exceeds 5-to-15 times their atmospheric input. Mass budgets per se thus indicate sizeable net leaching of Mg, Ca and Sr from bedrock sandstones and claystones. Surprisingly, δ26Mg, δ44Ca and 87Sr/86Sr isotope ratios of runoff were practically identical to those of atmospheric deposition and soil water but significantly different from bedrock isotope ratios. We did not find any carbonates in the studied area as a hypothetical, easily dissolvable source of base cations whose isotope composition might corroborate the predominance of geogenic base cations in the runoff. Marine carbonates typically have lower δ26 Mg and 87Sr/86Sr ratios, and silicate sediments often have higher δ26Mg and 87Sr/86Sr ratios than runoff at the study site. Mixing of these two sources, if confirmed, could reconcile the flux and isotope data.


Assuntos
Cálcio , Magnésio , Cálcio/análise , Magnésio/análise , Ecossistema , Monitoramento Ambiental , Isótopos de Estrôncio/análise , Isótopos , Cátions , Carbonatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...